Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Microscopy and Microanalysis ; 29(2):649-657, 2023.
Article in English | Web of Science | ID: covidwho-20233850

ABSTRACT

The nucleocapsid (N) protein is an abundant component of SARS-CoV-2 and a key analyte for lateral-flow rapid antigen tests. Here, we present new structural insights for the SARS-CoV-2 N protein using cryo-electron microscopy (EM) and molecular modeling tools. Epitope mapping based on structural data supported host-immune interactions in the C-terminal portion of the protein, while other regions revealed protein-protein interaction sites. Complementary modeling results suggested that N protein structures from known variants of concern (VOC) are nearly 100% conserved at specific antibody-binding sites. Collectively, these results suggest that rapid tests that target the nucleocapsid C-terminal domain should have similar accuracy across all VOCs. In addition, our combined structural modeling workflow may guide the design of immune therapies to counter viral processes as we plan for future variants and pandemics.

2.
Cell Rep ; 42(6): 112621, 2023 May 26.
Article in English | MEDLINE | ID: covidwho-2327607

ABSTRACT

Continued evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is eroding antibody responses elicited by prior vaccination and infection. The SARS-CoV-2 receptor-binding domain (RBD) E406W mutation abrogates neutralization mediated by the REGEN-COV therapeutic monoclonal antibody (mAb) COVID-19 cocktail and the AZD1061 (COV2-2130) mAb. Here, we show that this mutation remodels the receptor-binding site allosterically, thereby altering the epitopes recognized by these three mAbs and vaccine-elicited neutralizing antibodies while remaining functional. Our results demonstrate the spectacular structural and functional plasticity of the SARS-CoV-2 RBD, which is continuously evolving in emerging SARS-CoV-2 variants, including currently circulating strains that are accumulating mutations in the antigenic sites remodeled by the E406W substitution.

3.
Structure ; 31(7): 801-811.e5, 2023 Jul 06.
Article in English | MEDLINE | ID: covidwho-2318034

ABSTRACT

Understanding the molecular features of neutralizing epitopes is important for developing vaccines/therapeutics against emerging SARS-CoV-2 variants. We describe three monoclonal antibodies (mAbs) generated from COVID-19 recovered individuals during the first wave of the pandemic in India. These mAbs had publicly shared near germline gene usage and potently neutralized Alpha and Delta, poorly neutralized Beta, and failed to neutralize Omicron BA.1 SARS-CoV-2 variants. Structural analysis of these mAbs in complex with trimeric spike protein showed that all three mAbs bivalently bind spike with two mAbs targeting class 1 and one targeting a class 4 receptor binding domain epitope. The immunogenetic makeup, structure, and function of these mAbs revealed specific molecular interactions associated with the potent multi-variant binding/neutralization efficacy. This knowledge shows how mutational combinations can affect the binding or neutralization of an antibody, which in turn relates to the efficacy of immune responses to emerging SARS-CoV-2 escape variants.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Humans , SARS-CoV-2/genetics , Antibodies, Monoclonal , Epitopes , Neutralization Tests
4.
J Biol Chem ; 299(5): 104697, 2023 05.
Article in English | MEDLINE | ID: covidwho-2300740

ABSTRACT

The processing of the Coronavirus polyproteins pp1a and pp1ab by the main protease Mpro to produce mature proteins is a crucial event in virus replication and a promising target for antiviral drug development. Mpro cleaves polyproteins in a defined order, but how Mpro and/or the polyproteins determine the order of cleavage remains enigmatic due to a lack of structural information about polyprotein-bound Mpro. Here, we present the cryo-EM structures of SARS-CoV-2 Mpro in an apo form and in complex with the nsp7-10 region of the pp1a polyprotein. The complex structure shows that Mpro interacts with only the recognition site residues between nsp9 and nsp10, without any association with the rest of the polyprotein. Comparison between the apo form and polyprotein-bound structures of Mpro highlights the flexible nature of the active site region of Mpro, which allows it to accommodate ten recognition sites found in the polyprotein. These observations suggest that the role of Mpro in selecting a preferred cleavage site is limited and underscores the roles of the structure, conformation, and/or dynamics of the polyproteins in determining the sequence of polyprotein cleavage by Mpro.


Subject(s)
Coronavirus 3C Proteases , Polyproteins , Proteolysis , SARS-CoV-2 , Humans , Polyproteins/metabolism , SARS-CoV-2/metabolism , Coronavirus 3C Proteases/metabolism
5.
Proc Natl Acad Sci U S A ; 120(18): e2213332120, 2023 05 02.
Article in English | MEDLINE | ID: covidwho-2304032

ABSTRACT

Among the current five Variants of Concern, infections caused by SARS-CoV-2 B.1.617.2 (Delta) variant are often associated with the greatest severity. Despite recent advances on the molecular basis of elevated pathogenicity using recombinant proteins, the architecture of intact Delta virions remains veiled. Moreover, pieces of molecular evidence for the detailed mechanism of S-mediated membrane fusion are missing. Here, we showed the pleomorphic nature of Delta virions from electron beam inactivated samples and reported the in situ structure and distribution of S on the authentic Delta variant. We also captured the virus-virus fusion events, which provided pieces of structural evidence for Delta's attenuated dependency on cellular factors for fusion activation, and proposed a model of S-mediated membrane fusion. Besides, site-specific glycan analysis revealed increased oligomannose-type glycosylation of native Delta S than that of the WT S. Together, these results disclose distinctive factors of Delta being the most virulent SARS-CoV-2 variant.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Membrane Fusion , Glycosylation , Spike Glycoprotein, Coronavirus
6.
Cell Rep ; 42(5): 112421, 2023 05 30.
Article in English | MEDLINE | ID: covidwho-2296271

ABSTRACT

Therapeutic antibodies are an important tool in the arsenal against coronavirus infection. However, most antibodies developed early in the pandemic have lost most or all efficacy against newly emergent strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), particularly those of the Omicron lineage. Here, we report the identification of a panel of vaccinee-derived antibodies that have broad-spectrum neutralization activity. Structural and biochemical characterization of the three broadest-spectrum antibodies reveal complementary footprints and differing requirements for avidity to overcome variant-associated mutations in their binding footprints. In the K18 mouse model of infection, these three antibodies exhibit protective efficacy against BA.1 and BA.2 infection. This study highlights the resilience and vulnerabilities of SARS-CoV-2 antibodies and provides road maps for further development of broad-spectrum therapeutics.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Animals , Mice , SARS-CoV-2 , Antibodies, Viral/therapeutic use , Broadly Neutralizing Antibodies
7.
Biochem Biophys Res Commun ; 660: 43-49, 2023 06 11.
Article in English | MEDLINE | ID: covidwho-2293477

ABSTRACT

The COVID-19 pandemic, caused by SARS-CoV-2, has led to over 750 million infections and 6.8 million deaths worldwide since late 2019. Due to the continuous evolution of SARS-CoV-2, many significant variants have emerged, creating ongoing challenges to the prevention and treatment of the pandemic. Therefore, the study of antibody responses against SARS-CoV-2 is essential for the development of vaccines and therapeutics. Here we perform single particle cryo-electron microscopy (cryo-EM) structure determination of a rabbit monoclonal antibody (RmAb) 9H1 in complex with the SARS-CoV-2 wild-type (WT) spike trimer. Our structural analysis shows that 9H1 interacts with the receptor-binding motif (RBM) region of the receptor-binding domain (RBD) on the spike protein and by directly competing with angiotensin-converting enzyme 2 (ACE2), it blocks the binding of the virus to the receptor and achieves neutralization. Our findings suggest that utilizing rabbit-derived mAbs provides valuable insights into the molecular interactions between neutralizing antibodies and spike proteins and may also facilitate the development of therapeutic antibodies and expand the antibody library.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Antibodies, Monoclonal , Pandemics , Cryoelectron Microscopy , Antibodies, Viral , Receptors, Virus/metabolism , Antibodies, Neutralizing , Protein Binding , Spike Glycoprotein, Coronavirus/chemistry
8.
mBio ; 14(3): e0065923, 2023 06 27.
Article in English | MEDLINE | ID: covidwho-2306496

ABSTRACT

The continued challenges of the COVID-19 pandemic combined with the growing problem of antimicrobial-resistant bacterial infections has severely impacted global health. Specifically, the Gram-negative pathogen Klebsiella pneumoniae is one of the most prevalent causes of secondary bacterial infection in COVID-19 patients, with approximately an 83% mortality rate observed among COVID-19 patients with these bacterial coinfections. K. pneumoniae belongs to the ESKAPE group of pathogens, a group that commonly gives rise to severe infections that are often life-threatening. Recently, K. pneumoniae carbapenemase (KPC)-producing K. pneumoniae has drawn wide public attention, as the mortality rate for this infection can be as high as 71%. The most predominant and clinically important multidrug efflux system in K. pneumoniae is the acriflavine resistance B (AcrB) multidrug efflux pump. This pump mediates resistance to different classes of structurally diverse antimicrobial agents, including quinolones, ß-lactams, tetracyclines, macrolides, aminoglycosides, and chloramphenicol. We here report single-particle cryo-electron microscopy (cryo-EM) structures of K. pneumoniae AcrB, in both the absence and the presence of the antibiotic erythromycin. These structures allow us to elucidate specific pump-drug interactions and pinpoint exactly how this pump recognizes antibiotics. IMPORTANCE Klebsiella pneumoniae has emerged as one of the most problematic and highly antibiotic-resistant pathogens worldwide. It is the second most common causative agent involved in secondary bacterial infection in COVID-19 patients. K. pneumoniae carbapenemase (KPC)-producing K. pneumoniae is a major concern in global public health because of the high mortality rate of this infection. Its drug resistance is due, in a significant part, to active efflux of these bactericides, a major mechanism that K. pneumoniae uses to resist to the action of multiple classes of antibiotics. Here, we report cryo-electron microscopy (cryo-EM) structures of the prevalent and clinically important K. pneumoniae AcrB multidrug efflux pump, in both the absence and the presence of the erythromycin antibiotic. These structures allow us to understand the action mechanism for drug recognition in this pump. Our studies will ultimately inform an era in structure-guided drug design to combat multidrug resistance in these Gram-negative pathogens.


Subject(s)
COVID-19 , Klebsiella Infections , Humans , Acriflavine/pharmacology , Klebsiella pneumoniae , Cryoelectron Microscopy , Pandemics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/pharmacology , Erythromycin , Klebsiella Infections/microbiology , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests
9.
Natl Sci Rev ; 9(9): nwac122, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2298768

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has an extremely broad host range that includes hippopotami, which are phylogenetically closely related to whales. The cellular ACE2 receptor is one of the key determinants of the host range. Here, we found that ACE2s from several marine mammals and hippopotami could efficiently bind to the receptor-binding domain (RBD) of both SARS-CoV and SARS-CoV-2 and facilitate the transduction of SARS-CoV and SARS-CoV-2 pseudoviruses into ACE2-expressing cells. We further resolved the cryo-electron microscopy complex structures of the minke whale ACE2 and sea lion ACE2, respectively, bound to the RBDs, revealing that they have similar binding modes to human ACE2 when it comes to the SARS-CoV-2 RBD and SARS-CoV RBD. Our results indicate that marine mammals could potentially be new victims or virus carriers of SARS-CoV-2, which deserves further careful investigation and study. It will provide an early warning for the prospective monitoring of marine mammals.

10.
Mil Med Res ; 10(1): 10, 2023 03 06.
Article in English | MEDLINE | ID: covidwho-2266974

ABSTRACT

Drug discovery is a crucial part of human healthcare and has dramatically benefited human lifespan and life quality in recent centuries, however, it is usually time- and effort-consuming. Structural biology has been demonstrated as a powerful tool to accelerate drug development. Among different techniques, cryo-electron microscopy (cryo-EM) is emerging as the mainstream of structure determination of biomacromolecules in the past decade and has received increasing attention from the pharmaceutical industry. Although cryo-EM still has limitations in resolution, speed and throughput, a growing number of innovative drugs are being developed with the help of cryo-EM. Here, we aim to provide an overview of how cryo-EM techniques are applied to facilitate drug discovery. The development and typical workflow of cryo-EM technique will be briefly introduced, followed by its specific applications in structure-based drug design, fragment-based drug discovery, proteolysis targeting chimeras, antibody drug development and drug repurposing. Besides cryo-EM, drug discovery innovation usually involves other state-of-the-art techniques such as artificial intelligence (AI), which is increasingly active in diverse areas. The combination of cryo-EM and AI provides an opportunity to minimize limitations of cryo-EM such as automation, throughput and interpretation of medium-resolution maps, and tends to be the new direction of future development of cryo-EM. The rapid development of cryo-EM will make it as an indispensable part of modern drug discovery.


Subject(s)
Artificial Intelligence , Drug Discovery , Humans , Cryoelectron Microscopy , Proteolysis Targeting Chimera , Quality of Life
11.
Antiviral Res ; 212: 105576, 2023 04.
Article in English | MEDLINE | ID: covidwho-2266454

ABSTRACT

Rapid emergence of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has prompted an urgent need for the development of broadly applicable and potently neutralizing antibody platform against the SARS-CoV-2, which can be used for combatting the coronavirus disease 2019 (COVID-19). In this study, based on a noncompeting pair of phage display-derived human monoclonal antibodies (mAbs) specific to the receptor-binding domain (RBD) of SARS-CoV-2 isolated from human synthetic antibody library, we generated K202.B, a novel engineered bispecific antibody with an immunoglobulin G4-single-chain variable fragment design, with sub- or low nanomolar antigen-binding avidity. Compared with the parental mAbs or mAb cocktail, the K202.B antibody showed superior neutralizing potential against a variety of SARS-CoV-2 variants in vitro. Furthermore, structural analysis of bispecific antibody-antigen complexes using cryo-electron microscopy revealed the mode of action of K202.B complexed with a fully open three-RBD-up conformation of SARS-CoV-2 trimeric spike proteins by simultaneously interconnecting two independent epitopes of the SARS-CoV-2 RBD via inter-protomer interactions. Intravenous monotherapy using K202.B exhibited potent neutralizing activity in SARS-CoV-2 wild-type- and B.1.617.2 variant-infected mouse models, without significant toxicity in vivo. The results indicate that this novel approach of development of immunoglobulin G4-based bispecific antibody from an established human recombinant antibody library is likely to be an effective strategy for the rapid development of bispecific antibodies, and timely management against fast-evolving SARS-CoV-2 variants.


Subject(s)
Antibodies, Bispecific , COVID-19 , Animals , Mice , Humans , SARS-CoV-2/metabolism , Antibodies, Viral , Antibodies, Bispecific/pharmacology , Cryoelectron Microscopy , Antibodies, Neutralizing , Spike Glycoprotein, Coronavirus
12.
J Control Release ; 357: 149-160, 2023 05.
Article in English | MEDLINE | ID: covidwho-2272030

ABSTRACT

Messenger RNA (mRNA) lipid nanoparticles (LNPs) have emerged at the forefront during the COVID-19 vaccination campaign. Despite their tremendous success, mRNA vaccines currently require storage at deep freeze temperatures which complicates their storage and distribution, and ultimately leads to lower accessibility to low- and middle-income countries. To elaborate on this challenge, we investigated freeze-drying as a method to enable storage of mRNA LNPs at room- and even higher temperatures. More specifically, we explored a novel continuous freeze-drying technique based on spin-freezing, which has several advantages compared to classical batch freeze-drying including a much shorter drying time and improved process and product quality controlling. Here, we give insight into the variables that play a role during freeze-drying by evaluating the impact of the buffer and mRNA LNP formulation (ionizable lipid to mRNA weight ratio) on properties such as size, morphology and mRNA encapsulation. We found that a sufficiently high ionizable lipid to mRNA weight ratio was necessary to prevent leakage of mRNA during freeze-drying and that phosphate and Tris, but not PBS, were appropriate buffers for lyophilization of mRNA LNPs. We also studied the stability of optimally lyophilized mRNA LNPs at 4 °C, 22 °C, and 37 °C and found that transfection properties of lyophilized mRNA LNPs were maintained during at least 12 weeks. To our knowledge, this is the first study that demonstrates that optimally lyophilized mRNA LNPs can be safely stored at higher temperatures for months without losing their transfection properties.


Subject(s)
COVID-19 , Nanoparticles , Humans , Temperature , RNA, Messenger , COVID-19 Vaccines , Freeze Drying/methods , Lipids
13.
Comput Struct Biotechnol J ; 20: 766-778, 2022.
Article in English | MEDLINE | ID: covidwho-2261663

ABSTRACT

The clinical manifestation of the recent pandemic COVID-19, caused by the novel SARS-CoV-2 virus, varies from mild to severe respiratory illness. Although environmental, demographic and co-morbidity factors have an impact on the severity of the disease, contribution of the mutations in each of the viral genes towards the degree of severity needs a deeper understanding for designing a better therapeutic approach against COVID-19. Open Reading Frame-3a (ORF3a) protein has been found to be mutated at several positions. In this work, we have studied the effect of one of the most frequently occurring mutants, D155Y of ORF3a protein, found in Indian COVID-19 patients. Using computational simulations we demonstrated that the substitution at 155th changed the amino acids involved in salt bridge formation, hydrogen-bond occupancy, interactome clusters, and the stability of the protein compared with the other substitutions found in Indian patients. Protein-protein docking using HADDOCK analysis revealed that substitution D155Y weakened the binding affinity of ORF3a with caveolin-1 compared with the other substitutions, suggesting its importance in the overall stability of ORF3a-caveolin-1 complex, which may modulate the virulence property of SARS-CoV-2.

14.
Structure ; 31(3): 253-264.e6, 2023 03 02.
Article in English | MEDLINE | ID: covidwho-2244577

ABSTRACT

The SARS-CoV-2 Omicron variant, with 15 mutations in Spike receptor-binding domain (Spike-RBD), renders virtually all clinical monoclonal antibodies against WT SARS-CoV-2 ineffective. We recently engineered the SARS-CoV-2 host entry receptor, ACE2, to tightly bind WT-RBD and prevent viral entry into host cells ("receptor traps"). Here we determine cryo-EM structures of our receptor traps in complex with stabilized Spike ectodomain. We develop a multi-model pipeline combining Rosetta protein modeling software and cryo-EM to allow interface energy calculations even at limited resolution and identify interface side chains that allow for high-affinity interactions between our ACE2 receptor traps and Spike-RBD. Our structural analysis provides a mechanistic rationale for the high-affinity (0.53-4.2 nM) binding of our ACE2 receptor traps to Omicron-RBD confirmed with biolayer interferometry measurements. Finally, we show that ACE2 receptor traps potently neutralize Omicron and Delta pseudotyped viruses, providing alternative therapeutic routes to combat this evolving virus.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , SARS-CoV-2 , Antibodies, Monoclonal , Protein Binding , Antibodies, Neutralizing
15.
Biomolecules ; 13(1)2023 01 09.
Article in English | MEDLINE | ID: covidwho-2241005

ABSTRACT

Elucidating protein-ligand interaction is crucial for studying the function of proteins and compounds in an organism and critical for drug discovery and design. The problem of protein-ligand interaction is traditionally tackled by molecular docking and simulation, which is based on physical forces and statistical potentials and cannot effectively leverage cryo-EM data and existing protein structural information in the protein-ligand modeling process. In this work, we developed a deep learning bioinformatics pipeline (DeepProLigand) to predict protein-ligand interactions from cryo-EM density maps of proteins and ligands. DeepProLigand first uses a deep learning method to predict the structure of proteins from cryo-EM maps, which is averaged with a reference (template) structure of the proteins to produce a combined structure to add ligands. The ligands are then identified and added into the structure to generate a protein-ligand complex structure, which is further refined. The method based on the deep learning prediction and template-based modeling was blindly tested in the 2021 EMDataResource Ligand Challenge and was ranked first in fitting ligands to cryo-EM density maps. These results demonstrate that the deep learning bioinformatics approach is a promising direction for modeling protein-ligand interactions on cryo-EM data using prior structural information.


Subject(s)
Deep Learning , Molecular Docking Simulation , Cryoelectron Microscopy/methods , Ligands , Proteins/chemistry , Protein Conformation
16.
Mol Ther ; 2022 Sep 15.
Article in English | MEDLINE | ID: covidwho-2233299

ABSTRACT

The uneven worldwide vaccination coverage against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and emergence of variants escaping immunity call for broadly effective and easily deployable therapeutic agents. We have previously described the human single-chain scFv76 antibody, which recognizes SARS-CoV-2 Alpha, Beta, Gamma and Delta variants. We now show that scFv76 also neutralizes the infectivity and fusogenic activity of the Omicron BA.1 and BA.2 variants. Cryoelectron microscopy (cryo-EM) analysis reveals that scFv76 binds to a well-conserved SARS-CoV-2 spike epitope, providing the structural basis for its broad-spectrum activity. We demonstrate that nebulized scFv76 has therapeutic efficacy in a severe hACE2 transgenic mouse model of coronavirus disease 2019 (COVID-19) pneumonia, as shown by body weight and pulmonary viral load data. Counteraction of infection correlates with inhibition of lung inflammation, as observed by histopathology and expression of inflammatory cytokines and chemokines. Biomarkers of pulmonary endothelial damage were also significantly reduced in scFv76-treated mice. The results support use of nebulized scFv76 for COVID-19 induced by any SARS-CoV-2 variants that have emerged so far.

17.
Elife ; 122023 01 25.
Article in English | MEDLINE | ID: covidwho-2217495

ABSTRACT

The severe acute respiratory syndrome associated coronavirus 2 (SARS-CoV-2) and SARS-CoV-1 accessory protein Orf3a colocalizes with markers of the plasma membrane, endocytic pathway, and Golgi apparatus. Some reports have led to annotation of both Orf3a proteins as viroporins. Here, we show that neither SARS-CoV-2 nor SARS-CoV-1 Orf3a form functional ion conducting pores and that the conductances measured are common contaminants in overexpression and with high levels of protein in reconstitution studies. Cryo-EM structures of both SARS-CoV-2 and SARS-CoV-1 Orf3a display a narrow constriction and the presence of a positively charged aqueous vestibule, which would not favor cation permeation. We observe enrichment of the late endosomal marker Rab7 upon SARS-CoV-2 Orf3a overexpression, and co-immunoprecipitation with VPS39. Interestingly, SARS-CoV-1 Orf3a does not cause the same cellular phenotype as SARS-CoV-2 Orf3a and does not interact with VPS39. To explain this difference, we find that a divergent, unstructured loop of SARS-CoV-2 Orf3a facilitates its binding with VPS39, a HOPS complex tethering protein involved in late endosome and autophagosome fusion with lysosomes. We suggest that the added loop enhances SARS-CoV-2 Orf3a's ability to co-opt host cellular trafficking mechanisms for viral exit or host immune evasion.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/metabolism , Endosomes/metabolism , Ion Channels/metabolism
18.
Int J Mol Sci ; 23(24)2022 Dec 14.
Article in English | MEDLINE | ID: covidwho-2163440

ABSTRACT

The relationship between conserved structural motifs and their biological function in the virus replication cycle is the interest of many researchers around the world. RNA structure is closely related to RNA function. Therefore, technological progress in high-throughput approaches for RNA structure analysis and the development of new ones are very important. In this mini review, we discuss a few perspectives on the structural elements of viral genomes and some methods used for RNA structure prediction and characterization. Based on the recent literature, we describe several examples of studies concerning the viral genomes, especially severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV). Herein, we emphasize that a better understanding of viral genome architecture allows for the discovery of the structure-function relationship, and as a result, the discovery of new potential antiviral therapeutics.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Genome, Viral , RNA, Viral/genetics , RNA, Viral/chemistry , Antiviral Agents , Virus Replication/genetics
19.
Front Microbiol ; 13: 988298, 2022.
Article in English | MEDLINE | ID: covidwho-2142108

ABSTRACT

Neutralizing monoclonal antibodies (mAbs) against highly pathogenic coronaviruses represent promising candidates for clinical intervention. Here, we isolated a potent neutralizing monoclonal antibody, MERS-S41, from a yeast displayed scFv library using the S protein as a bait. To uncover the neutralization mechanism, we determined structures of MERS-S41 Fab in complex with the trimeric spike glycoprotein by cryoelectron microscopy (cryo-EM). We observed four distinct classes of the complex structure, which showed that the MERS-S41 Fab bound to the "up" receptor binding domain (RBD) with full saturation and also bound to an accessible partially lifted "down" RBD, providing a structural basis for understanding how mAbs bind to trimeric spike glycoproteins. Structure analysis of the epitope and cell surface staining assays demonstrated that virus entry is blocked predominantly by direct competition with the host receptor, dipeptidyl peptidase-4 (DPP4).

20.
Viruses ; 14(12)2022 12 03.
Article in English | MEDLINE | ID: covidwho-2143731

ABSTRACT

Positive-strand RNA virus RNA genome replication occurs in membrane-associated RNA replication complexes (RCs). Nodavirus RCs are outer mitochondrial membrane invaginations whose necked openings to the cytosol are "crowned" by a 12-fold symmetrical proteinaceous ring that functions as the main engine of RNA replication. Similar protein crowns recently visualized at the openings of alphavirus and coronavirus RCs highlight their broad conservation and functional importance. Using cryo-EM tomography, we earlier showed that the major nodavirus crown constituent is viral protein A, whose polymerase, RNA capping, membrane interaction and multimerization domains drive RC formation and function. Other viral proteins are strong candidates for unassigned EM density in the crown. RNA-binding RNAi inhibitor protein B2 co-immunoprecipitates with protein A and could form crown subdomains that protect nascent viral RNA and dsRNA templates. Capsid protein may interact with the crown since nodavirus virion assembly has spatial and other links to RNA replication. Using cryoelectron tomography and complementary approaches, we show that, even when formed in mammalian cells, nodavirus RC crowns generated without B2 and capsid proteins are functional and structurally indistinguishable from mature crowns in infected Drosophila cells expressing all viral proteins. Thus, the only nodaviral factors essential to form functional RCs and crowns are RNA replication protein A and an RNA template. We also resolve apparent conflicts in prior results on B2 localization in infected cells, revealing at least two distinguishable pools of B2. The results have significant implications for crown structure, assembly, function and control as an antiviral target.


Subject(s)
RNA Replication , Viral Proteins , Animals , Viral Proteins/genetics , Virus Replication , Virus Assembly , Capsid Proteins/genetics , Drosophila/genetics , RNA, Double-Stranded , RNA, Viral/genetics , RNA, Viral/metabolism , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL